The De-Scent of Sexuality: Did Loss of a Pheromone Signaling Protein Permit the Evolution of Same-Sex Sexual Behavior in Primates? Daniel Pfau, Cynthia L. Jordan, S. Marc Breedlove. Archives of Sexual Behavior, Apr 23 2019. https://link.springer.com/article/10.1007/s10508-018-1377-2
Abstract: Primate same-sex sexual behavior (SSSB) is rarely observed in strepsirrhine species, and only somewhat more common in platyrrhines, but is observed in nearly all catarrhine species, including humans, suggesting the common catarrhine ancestor as the origin of routine SSSB. In mice, disruption of the transient receptor potential cation channel 2 (TRPC2) gene, which is crucial for transducing chemosensory signals from pheromones in the vomeronasal organ, greatly increased the likelihood of SSSB. We note that catarrhine primates share a common deleterious mutation in this gene, indicating that the protein was dysfunctional in the common catarrhine ancestral primate approximately 25 mya (million years ago). We hypothesize that the loss of this protein for processing pheromonal signals in males and females made SSSB more likely in a primate ancestral species by effectively lifting a pheromonally mediated barrier to SSSB and that this was an important precursor to the evolution of such behavior in humans. Additional comparisons between SSSB and the functional status of the TRPC2 gene or related proteins across primate species could lend support to or falsify this hypothesis. Our current research indicates that loss of TRPC2 function in developing mice leads to the loss or attenuation of sexually dimorphisms in the adult brain, which may help us to understand the biological underpinnings of SSSB. Our hypothesis offers an ultimate evolutionary explanation for SSSB in humans.
Keywords: TRPC2 Same-sex sexual behavior Primates Sexual orientation Pheromone
No comments:
Post a Comment