The global burden of falls: global, regional and national estimates of morbidity and mortality from the Global Burden of Disease Study 2017. Spencer L James et al. Injury Prevention, Volume 26, Issue Supp 1. Oct 1 2020. http://dx.doi.org/10.1136/injuryprev-2019-043286
Abstract
Background Falls can lead to severe health loss including death. Past research has shown that falls are an important cause of death and disability worldwide. The Global Burden of Disease Study 2017 (GBD 2017) provides a comprehensive assessment of morbidity and mortality from falls.
Methods Estimates for mortality, years of life lost (YLLs), incidence, prevalence, years lived with disability (YLDs) and disability-adjusted life years (DALYs) were produced for 195 countries and territories from 1990 to 2017 for all ages using the GBD 2017 framework. Distributions of the bodily injury (eg, hip fracture) were estimated using hospital records.
Results Globally, the age-standardised incidence of falls was 2238 (1990–2532) per 100 000 in 2017, representing a decline of 3.7% (7.4 to 0.3) from 1990 to 2017. Age-standardised prevalence was 5186 (4622–5849) per 100 000 in 2017, representing a decline of 6.5% (7.6 to 5.4) from 1990 to 2017. Age-standardised mortality rate was 9.2 (8.5–9.8) per 100 000 which equated to 695 771 (644 927–741 720) deaths in 2017. Globally, falls resulted in 16 688 088 (15 101 897–17 636 830) YLLs, 19 252 699 (13 725 429–26 140 433) YLDs and 35 940 787 (30 185 695–42 903 289) DALYs across all ages. The most common injury sustained by fall victims is fracture of patella, tibia or fibula, or ankle. Globally, age-specific YLD rates increased with age.
Conclusions This study shows that the burden of falls is substantial. Investing in further research, fall prevention strategies and access to care is critical.
Discussion
This study represents the first time that GBD estimates for falls have been reported in this level of detail through recent years, and illustrates the substantial amount of mortality and health loss in every country, age group and sex. Globally, total deaths and DALYs due to falls have increased steadily since 1990, with death counts nearly doubling by 2017. Conversely, age-standardised mortality rates and DALY rates have slightly decreased over the same period. At the country level, age-standardised mortality due to falls was highest in the Solomon Islands, India and Vietnam. The patterns of MIRs described in the results of our study emphasise how mortality risk per fall varies substantially by country and reveal that certain areas of the world likely have inadequate capabilities of responding to injurious falls. Since mortality from falls is associated with age and since global populations are generally ageing, it is important for all countries to ensure that their older adult populations as well as their ageing populations have adequate access to caretaking and treatment resources now and in the future.10 More focused research in the countries with the highest MIRs should investigate the specific causes of injury deaths from falls, the associated risk factors, and the circumstances and context of falls in order to target prevention efforts and appropriately allocate treatment resources. We additionally describe how falls have improved in terms of incidence and cause-specific mortality in the highest SDI countries, but that these improvements have not necessarily been experienced in lower SDI countries. This pattern emphasises how it is critical for lower SDI countries to more thoroughly investigate patterns of falls and to invest in prevention and treatment programmes.
Among clinicians, falls are known to be an important risk in certain populations, as they can be an origin of injury that leads to more complex care, such as the otherwise healthy older adult who slips, falls, sustains a femur fracture and then is admitted to the hospital for surgical repair and develops a condition like healthcare-acquired pneumonia. Such vignettes emphasise how a fall can precipitate significant health loss and potentially death. 29However, a young person who falls can also suffer disability the rest of his or her life, leading to income loss, dependence on caretakers and adequate accessibility options. Among the countries with highest incidence in 2017 were Slovenia, Czech Republic and Slovakia—countries with high percentages of rural populations.30 In Slovenia, nearly half of the population lives in a rural area, and there is evidence that falls are less fatal and more frequent in rural older people.31 32 Age-standardised DALY rates were particularly high in specific regions, including Central Europe, Eastern Europe and Australasia. Many of these regions are experiencing intensive ageing of the population.33 Poland, for example, is projected to increase the population aged 65 and over by 4.9 million in the years 2015–2050, requiring significant public healthcare expenditure on therapeutic rehabilitation.34
Research suggests that falls can cause physical harm and psychological and financial harm. A 3-year longitudinal study conducted by Tinetti and Williams explored the short and long-term effects of a fall on the well-being of those 65 and older. Among the participants, injurious falls resulted in a variety of conditions, including hip fractures, other fractures and soft tissue injuries; ultimately these injurious falls led to a decline in daily functional status.35 Other research has shown that falling often triggers a fear of falling again, likely impairing one’s sense of mobility and autonomy.9 This fear is a proven risk factor for future falls; thus, one fall can initiate a cascade of negative health outcomes.9 Ultimately, the initial morbidity of a fall can manifest into significant health loss over time, amounting to considerable treatment and care costs.36 Future GBD research may provide estimates on the probability of long-term disability for individuals who sustain injurious falls.
In general, research on the prevention of falls has shown that improving personal health as well as addressing unsafe external factors can be effective in preventing falls. For example, exercise programmes have been shown to reduce falls among community-dwelling individuals aged 65 and older.8 37 A person’s surrounding environment has also been identified as a leading cause of falls,9 10 meaning it is possible to prevent falls through the improvement of living conditions and public spaces, especially if older adults and universal design principles attending to safety are kept in mind when spaces are designed, altered and maintained.38 While some external hazards for falls are well known (eg, slippery surfaces or poor lighting), others are less visible or obvious. For example, in the inpatient setting, a study by Vassallo et al found that the hospital wards with more inpatient beds within the sightline of the nursing station had fewer falls than the ward with poor visibility between beds and the nursing station.39 Location-specific research in falls prevention has also shown that exercise, home modification, educational materials and vision correction are all important.40 41 It is also important to consider how morbidity or mortality resulting from falls might be mitigated. Clinical literature has supported frequent medication review with avoidance of polypharmacy,42 and dietary supplementation with cholecalciferol (vitamin D3) for select patients as methods to both prevent fall incidents and to help minimise fracture risk, though more recent assessments and recommendations by the US Preventive Services Task Force have revealed mixed results in terms of the benefits of vitamin D supplementation.43–46
Our study has several limitations. The first limitation is a function of our case definition in non-fatal models, where we estimate the incidence of falls that require medical care. While not every fall leads to injury, it is possible that care-seeking behavior with similar injuries could vary by location. Similarly, it is possible that in survey data or routine outpatient care visits, a patient may not report falls in the past year even if they led to minor injuries. Since our case definition includes only falls that lead to injury, our MIR estimates are likely lower than if we included all falls regardless of whether they led to injury requiring medical care. However, since the purpose of estimating those ratios is to illustrate patterns in severity and access to treatment, this limitation does not impact the key themes highlighted in our study. In addition, a general limitation in GBD analysis is that some areas of the world that may have high burden of various diseases and injuries do not have reliable incidence and cause-of-death data, and therefore our estimation process relies more heavily on covariates and regional trends in those areas. Similarly, the nature-of-injury distributions and injury duration parameters rely more heavily on data from higher income locations and Dutch injury data, and therefore may benefit in the future from adding more data sources from lower income locations so that that these parameters can be refined with greater location heterogeneity in future studies. Accordingly, an emphasis of GBD estimation going forward is to continue seeking additional data sources to be used in our modelling process.