Saturday, March 13, 2021

A Model of the Cosmos in the ancient Greek Antikythera Mechanism

A Model of the Cosmos in the ancient Greek Antikythera Mechanism. Tony Freeth, David Higgon, Aris Dacanalis, Lindsay MacDonald, Myrto Georgakopoulou & Adam Wojcik. Scientific Reports volume 11, Article number: 5821 (2021). https://www.nature.com/articles/s41598-021-84310-w

Abstract: The Antikythera Mechanism, an ancient Greek astronomical calculator, has challenged researchers since its discovery in 1901. Now split into 82 fragments, only a third of the original survives, including 30 corroded bronze gearwheels. Microfocus X-ray Computed Tomography (X-ray CT) in 2005 decoded the structure of the rear of the machine but the front remained largely unresolved. X-ray CT also revealed inscriptions describing the motions of the Sun, Moon and all five planets known in antiquity and how they were displayed at the front as an ancient Greek Cosmos. Inscriptions specifying complex planetary periods forced new thinking on the mechanization of this Cosmos, but no previous reconstruction has come close to matching the data. Our discoveries lead to a new model, satisfying and explaining the evidence. Solving this complex 3D puzzle reveals a creation of genius—combining cycles from Babylonian astronomy, mathematics from Plato’s Academy and ancient Greek astronomical theories.


Conclusions

Figure 7, Supplementary Figs. S24, S25, Supplementary Videos S1S3 visualize our new model: the culmination of a substantial cross-disciplinary effort to elucidate the front of the Antikythera Mechanism. Previous research unlocked the ingenuity of the Back Dials, here we show the richness of the Cosmos at the front. The main structural features of our model are prescribed by the physical evidence, the prime factors of the restored planetary period relations and the ring description in the BCI. Hypothetical features greatly enhance and justify the Cosmos display: a Dragon Hand thematically linking the Front and Back Dials; and an Index Letter Scheme for the synodic events of the planets.

Because of the loss of evidence, we cannot claim that our model is a replica of the original, but our solution to this convoluted 3D puzzle draws powerful support from the logic of our model and its exact match to the surviving evidence. The Antikythera Mechanism was a computational instrument for mathematical astronomy, incorporating cycles from Babylonian astronomy and the Greek flair for geometry. It calculated the ecliptic longitudes of the Moon7, Sun3 and planets1,2,3,9,11; the phase of the Moon10; the Age of the Moon10; the synodic phases of the planets; the excluded days of the Metonic Calendar8; eclipses7,8,23—possibilities, times, characteristics, years and seasons; the heliacal risings and settings of prominent stars and constellations1,2,7,25; and the Olympiad cycle8—an ancient Greek astronomical compendium of staggering ambition. It is the first known device that mechanized the predictions of scientific theories and it could have automated many of the calculations needed for its own design (Supplementary Discussion S6)—the first steps to the mechanization of mathematics and science. Our work reveals the Antikythera Mechanism as a beautiful conception, translated by superb engineering into a device of genius. It challenges all our preconceptions about the technological capabilities of the ancient Greeks. 

No comments:

Post a Comment