Friday, April 23, 2021

Multimodal mate choice: Exploring the effects of sight, sound, and scent on partner choice in a speed-date paradigm

Multimodal mate choice: Exploring the effects of sight, sound, and scent on partner choice in a speed-date paradigm. Tom S. Roth, Iliana Samara, Mariska E. Kret. Evolution and Human Behavior, April 23 2021. https://doi.org/10.1016/j.evolhumbehav.2021.04.004

Abstract: When people meet a potential partner for the first time, they are confronted with multiple sources of information, encompassing different modalities, that they can use to determine whether this partner is suitable for them or not. While visual attractiveness has widely been studied with regard to partner choice, olfactory and auditory cues have received less attention, even though they might influence the attitudes that people have towards their partner. Therefore, in this study, we employed a combination of pre-date multimodal rating tasks followed by speed-date sessions. This offered a naturalistic setup to study partner choice and disentangle the relative effects of a priori attractiveness ratings of sight, scent and sound on date success. Visual attractiveness ratings showed a strong positive correlation with propensity to meet the partner again, while the effects of olfactory and auditory attractiveness were negligible or not robust. Furthermore, we found no robust sex differences in the importance of the three modalities. Our findings underscore the relative importance of visual attractiveness in initial mate choice, but do not corroborate the idea that static pre-date measures of auditory and olfactory attractiveness can predict first date outcomes.

Keywords: Mate choiceRomantic loveMultimodal perceptionOlfactory cuesAuditory cues

4. Discussion

Choosing a romantic partner is an important life decision. Previous research has mainly focused on the role of physical attractiveness during early stages of partner choice (Asendorpf et al., 2011Kurzban & Weeden, 2005Sidari et al., 2020). However, recent evidence reveals that attractiveness is multimodal, further involving scent and sound (Groyecka et al., 2017). Therefore, here, we examined the effect of multimodal attractiveness ratings of static samples in an ecologically valid speed-date setting (Finkel et al., 2007) and asked participants to indicate whether they would like to meet their dating partner again. To our knowledge, this is the first study that examines the effect of sight, sound and scent on speed-date outcomes. Our results are threefold. First, we show that there were only low levels of covariance in the different modalities of attractiveness. Second, using a partial model and independent models, we show that pre-date visual attractiveness ratings correlate strongly with propensity to meet again, while no strong effects were found for vocal and olfactory attractiveness. Third, in the partial model we found no robust sex differences in the importance of the different modalities. In the independent models, however, we did find robust sex differences for the effects of visual and olfactory attractiveness. Here, we discuss these findings and further address possible limitations of our study.

In the current study we observed that visual attractiveness correlated positively with auditory attractiveness and olfactory attractiveness, respectively. This finding is in line with the back-up cue hypothesis (Candolin, 2003Johnstone, 1997). However, it is important to note that the effect sizes were very small when compared to previous studies (Collins & Missing, 2003Cornwell et al., 2004), and it is therefore questionable whether such low correlations have any practical relevance. In addition, we did not find clear differences between sexes, while some of the previous studies only described such concordance of multimodal attractiveness ratings in a specific sex (e.g., Collins & Missing, 2003). Larger studies may be better suited to detect such nuances in future work.

Our most prominent finding is that, from all three modalities, facial attractiveness showed the strongest correlation with willingness to date again across both genders. This is in line with previous findings from speed-date paradigms (Asendorpf et al., 2011Luo & Zhang, 2009), and experimental paradigms incorporating multimodal attractiveness ratings (Foster, 2008). This finding is not surprising, given that humans are extremely visually-oriented beings, rendering sight the most conspicuous source of information in mate choice (Krupp, 2008). Thus, our results corroborate the relative importance of facial attractiveness compared to scent and sound during initial phases of partner selection. Indeed, in a busy public place, such as a bar or a speed-dating event for that matter, visual information is the most apparent and reliable cue upon first acquaintance, because auditory cues might be distorted by noise and olfactory cues will be difficult to perceive in isolation (Thomas-Danguin et al., 2014), given the fact that mixing with other people's odour might obfuscate individual olfactory cues.

In line with this notion, we found little evidence to support the multimodal nature of attractiveness during speed-dates. Auditory attractiveness seemed to slightly influence partner choice decisions in men: they were more likely to indicate their willingness to go another date if they rated their female partner's voice as attractive. However, the effect was small, especially when compared to the effect that visual attractiveness had on male partner choice decisions. For women, no clear effect of auditory attractiveness on their partner choice decisions was observed in the partial model, although the independent model showed a similar pattern for both men and women. These findings are somewhat consistent with previous research (Asendorpf et al., 2011), that found a smaller effect of vocal attractiveness than visual attractiveness, although the effect of vocal attractiveness was significant. It is important to note, though, that Asendorpf et al. (2011) obtained visual and auditory attractiveness ratings from an independent group of raters, while we used individual attractiveness ratings to predict dating outcome. Therefore, it is not clear whether these findings are directly comparable. However, the fact that a study using independent raters finds a similar strong effect of visual attractiveness on date outcome shows how important facial attractiveness is, and at the same time suggests it is unlikely that potential demand characteristics underlie our main result.

Furthermore, the effect of auditory attractiveness on dating outcomes might be obfuscated by voice modulation and interpersonal dynamics during speed-dates. People modulate the pitch of their voice when addressing a desirable partner (Fraccaro et al., 2011Leongómez et al., 2014Pisanski et al., 2018). In addition, the presence and sound of other people, and a camera recording the interaction, might have further affected the mental states of the participants and, consequently, their voices. Therefore, it is likely that participant's spoke differently (e.g., different pitch) during the audio recordings and the actual dates, leading to the discrepancies in perception of the recorded voice and the voice that was heard on the date on the rater's end. Thus, using an isolated rating task for voices might have slightly obscured the importance of voice during the actual dates. Future research should compare how isolated measures of vocal attractiveness relate to vocal attractiveness in an explicitly social context such as a date.

We found a small effect of olfactory attractiveness on willingness to date again for women, but not for men. Interestingly, the relationship that we found for women was negative: they were less likely to want to go on another date with men whose smell they rated as attractive. This direction of the effect is surprising given previous evidence suggesting that scent plays an important role in mate selection for women (Havlíček et al., 2008). It is unclear why this effect might have occurred. One possible explanation is a methodological one: the olfactory samples employed in the present study should be perceived as indicators of diplomatic body odour (Gaby & Zayas, 2017). Diplomatic body odour samples might be more ecologically valid than natural body odour samples, as odours are heavily affected by the use of hygiene products and personal habits in real life, which may interfere with olfactory cues for mate choice (Allen, Cobey, Havlíček, & Roberts, 2016Gaby & Zayas, 2017Sorokowska, Sorokowski, & Havlíček, 2016). With regard to the negative correlation we found, it can theoretically be possible that men who know they have a strong body odour used extra hygiene products when wearing the t-shirt, even though they were instructed not to. This would then result in high attractiveness ratings for odour, while the actual smell perceived on the date would be unpleasant. Note that this explanation does assume that women actually perceived the natural odour during the date. Because we have no compliance data for the t-shirt preparation, we can unfortunately not exclude this explanation. Such potential dicrepancies between different types of body odour highlight the difficulties of studying the effects of olfaction on human mate choice (Ferdenzi, Richard Ortegón, Delplanque, Baldovini, & Bensafi, 2020), and future studies could consider incorporating both natural and diplomatic samples.

Importantly, some important questions about multimodal attractiveness and initial attraction remain. For example, a question that we have not investigated is how cross-modal interactions shape attraction. Given our sample is relatively small, we could not examine such complex relationships. Nonetheless, investigating such dynamics might be vital to grasp the complex dynamics of multimodal attractiveness (Groyecka et al., 2017). For example, having an attractive voice and an attractive face might especially increase dating success, or unattractiveness on one modality might reduce the positive effect of the other modality (Demattè, Österbauer, & Spence, 2007). We suggest that large-scale studies using a similar design to our studies are necessary to further elucidate these complex interactions. Another example concerns the context-dependent importance of the different modalities. Visual and vocal attractiveness might be especially important during first interactions in which close contact is rare. Olfactory attractiveness, however, may be important during more advanced stages of the relationship (Groyecka et al., 2017), when close contact is more common, or during first interactions with close physical contact. Altogether, investigating cross-modality interactions and context-dependence are essential to understand how multimodal attractiveness shapes initial attraction.

In conclusion, our results corroborate the importance of visual attractiveness in early stages of mate choice. At the same time, the static attractiveness ratings for auditory and olfactory attractiveness did not substantially predict date outcome. This suggests that especially visual attractiveness is relatively important during speed-dates, while auditory and olfactory attractiveness are less important. Nonetheless, these modalities might come into play in other stages of the developing relationship or in other contexts. Furthermore, attractiveness of voice and smell may be more strongly influenced by dynamics during an interaction, rendering static attractiveness ratings to be less predictive. Altogether, our findings illustrate that the coupling of multimodal rating tasks and speed-date paradigms is a fruitful method of studying multimodal human mate choice. Applying such methods with large-scale samples allows for disentangling the effects of different factors on date outcome, and could further aid in understanding how human mate choice is affected by sight, sound, and scent.

Most insults targeted at men derogated formidability/status and sexuality/gender, and most insults targeted at women derogated physical appearance and ascribed promiscuity

Harrison, M. A., & Hughes, S. M. (2021). Ugly or weak? Insults target sex-specific cues of mate value. Evolutionary Behavioral Sciences, Apr 2021. https://doi.org/10.1037/ebs0000264

Abstract: Insulting comments are meant to demean a target. From the lens of evolutionary psychology, we theorized that the most used insults could be tied to evolved, sex-specific cues of mate value. We predicted that participants would ascribe as more insulting to men or to women phrases that derogate sex-specific cues of mate value. We analyzed both qualitative and quantitative data from 136 survey participants (age M = 21.2, SD = 6.1). Predictions were supported by notable consensus, and there were largely no sex differences in insult use. Most insults targeted at men derogated formidability/status and sexuality/gender, and most insults targeted at women derogated physical appearance and ascribed promiscuity. These qualities have been shown to be salient cues to mate viability for each sex, respectively. Limitations and future directions for research are discussed.


From 2015... The love-darts of simultaneous hermaphrodites like land snails seem to have evolved as a result of conflict over the fate of donated sperm

The love-darts of land snails: integrating physiology, morphology and behaviour. Monica Lodi, Joris M. Koene. Journal of Molluscan Studies, Volume 82, Issue 1, February 2016, Pages 1–10, August 25 2015. https://doi.org/10.1093/mollus/eyv046

Abstract: Several land-snail species of the helicoid and limacoid superfamilies possess one or more love-darts, which seem to have evolved as a result of conflict over the fate of donated sperm and/or as a way to select the most fit sperm donor. A love-dart is a calcareous stylet used during mating encounters to pierce the partner's body wall. When used, it carries accessory gland mucous products that influence the partner's physiology. Most of the knowledge on the effects of the glands' mucus derives from a single well-studied species, Cornu aspersum, in which the mucus increases the male reproductive success of the dart user. However, detailed descriptions on the use of the dart are limited to just a few other species. Hence, here we compare physiological, morphological and behavioural aspects concerning love-darts in several dart-bearing species. Patterns in the use of the dart are identified according to family and we discuss the coevolution of the morphology of the dart and anatomical traits of the reproductive system. The reported physiological effects caused by the dart's mucus suggest a common function of the dart in increasing male reproductive success. Nevertheless, caution is needed when generalizing the use and effects of the love-dart, which are predominantly based on one model organism.

CONCLUSION

The comparative approach taken here indicates that the common feature in dart shooting across families is the enhancement of male reproductive success by transferring mucus from the shooter to the recipient, inhibiting the destruction of received sperm. The precise mechanisms may be family-specific or conserved across families (e.g. Kimura et al., 2013Kimura et al., 2014, respectively). In vivo and in vitro investigations in this direction have only just begun, but are already showing promising results by highlighting differences and commonalities with the well-studied species Cornu aspersum. In this respect, particular families of interest to be investigated are the Helminthoglyptidae and Hygromiidae and the superfamily Limacoidea, for which no information is available.

The relationship between the shape and size of the dart, its manner of use and other traits of reproductive anatomy show some consistent differences among families. While the patterns are all consistent with expectations based on sexual conflict (Koene & Schulenburg, 2005), the evolution of such coadaptations cannot yet be traced. The relationships between dart-bearing families are still unclear and thus the ancestral conditions cannot be determined. While there is an ontogenetic homology in the tissues forming the dart and its accompanying structures, darts as such might have evolved more than once as a strengthening of noninjurious, external hormonal secretions. More work on phylogeny is needed.

More behavioural observations on the use of the dart are also necessary, especially for those species with multiple love-darts (e.g. the helicoid Humboldtiana). The quantification of the costs of receiving a dart has only just begun (Kimura & Chiba, 2015) and needs to be done for different species; it would be desirable to measure any immune or stress response following dart receipt (e.g. resulting from any bacterial infection due to the wounding by the dart). In our opinion the most promising and fruitful direction of investigation among all the aspects reviewed here is the physiological response of the receiver induced by the mucus delivered with the dart. As suggested by recent results, the dart seems to cause physiological changes that favour male reproductive success in more species than just C. aspersum. A broader study in this direction should assess the function of the dart in multiple species. Not only complete mucus extracts, but also the recently discovered LDA peptide (responsible for one of the physiological changes in both C. aspersum and Theba pisana), could be used experimentally. This opens up a new area of study that can investigate the expression and similarity of LDA in different dart-bearing species. This will enable a comparison across families at the allohormone level and is expected to shed light on the evolution of such substances. Such analysis can be further expanded when the peptides and proteins in the mucus responsible for different responses are identified, such as for muscular contractions, mating inhibition and increased sperm storage or paternity. To broaden our understanding of love-darts, a comparative approach across superfamilies will provide more reliable general conclusions than can at present be drawn based mainly on studies of C. aspersum.

Authors discuss the possible role of skill in determining mating success; they highlight functional similarities between fighting and mating behaviours

Skilful mating? Insights from animal contest research. Sarah M. Lane, Mark Briffa. Animal Behaviour, Apr 22 2021. https://doi.org/10.1016/j.anbehav.2021.03.006

Highlights

• Fighting and mating both involve the performance of repeated behaviours.

• Performance rate (vigour) and skill are of known importance for fighting success.

• Here, we discuss the possible role of skill in determining mating success.

• We highlight functional similarities between fighting and mating behaviours.

• We then identify mating behaviours for which a role for skill is strongly implied.

Whenever resources are limited and indivisible, fighting will evolve as a means to resolve ownership. Among such resources are mates, and individuals (usually males) of many species compete agonistically with rivals in order to gain access to potential mates. However, securing access is not necessarily enough to guarantee a mating or, if a mating is obtained, to guarantee that it is effective for securing reproductive success. Thus, in addition to fighting, individuals participate in a wealth of behaviours to maximize their reproductive success, from courtship to sperm competition to mate guarding. In recent years, the striking parallels between fighting and mating behaviour have become a subject of discussion. In particular, insights have been drawn from the predictions of contest theory to help us understand the use of repetitive signalling in courtship. Here, we take this discussion further, highlighting similarities between fighting and mating in the use of dynamic repeated behaviours, which function to (1) advertise quality and (2) convince or coerce an individual to relinquish the contested resource (gametes in terms of mating). We focus specifically on a performance trait of emerging interest in the field of animal contests, skill. We identify behaviours used throughout the mating process in which skill is likely to be of importance for securing success, and highlight key questions for future study.

Keywords: conflictcontest behaviourdynamic repeated behaviourfightinglimited resourcereproductive behavioursignallingskill

Check also from 2015... The love-darts of simultaneous hermaphrodites like land snails seem to have evolved as a result of conflict over the fate of donated sperm

The love-darts of simultaneous hermaphrodites like land snails seem to have evolved as a result of conflict over the fate of donated sperm


Thursday, April 22, 2021

Hemispheric asymmetries in visual mental imagery are difficult to reconcile with the dominant model of visual mental imagery, which relies on large-scale brain networks

Hemispheric asymmetries in visual mental imagery. Jianghao Liu, Alfredo Spagna & Paolo Bartolomeo . Brain Structure and Function, Apr 22 2021. https://rd.springer.com/article/10.1007/s00429-021-02277-w

Abstract: Visual mental imagery is the faculty whereby we can “visualize” objects that are not in our line of sight. Longstanding evidence dating back over thirty years has shown that unilateral brain lesions, especially in the left temporal lobe, can impair aspects of this ability. Yet, there is currently no attempt to identify analogies between these neuropsychological findings of hemispheric asymmetry and those from other neuroscientific approaches. Here, we present a critical review of the available literature on the hemispheric laterality of visual mental imagery, by looking at cross-method patterns of evidence in the domains of lesion neuropsychology, neuroimaging, and direct cortical stimulation. Results can be summarized under three main axes. First, frontoparietal networks in both hemispheres appear to be associated with visual mental imagery. Second, lateralization patterns emerge in the temporal lobes, with the left inferior temporal lobe being the most common finding in the literature for endogenously generated images, especially, but not exclusively, when orthographic material is used to ignite imagery. Third, an opposite pattern of hemispheric laterality emerges when visual mental images are induced by exogenous stimulation; direct cortical electrical stimulation tends to produce visual imagery experiences predominantly when applied to the right temporal lobe. These patterns of hemispheric asymmetry are difficult to reconcile with the dominant model of visual mental imagery, which emphasizes the implication of early sensory cortices. They suggest instead that visual mental imagery relies on large-scale brain networks, with a crucial participation of high-level visual regions in the temporal lobes.


The Netherlands: Male & female police officers were taller than the average population; overall, especially among women, height was linearly associated with occupational rank: the taller one was, the higher one’s rank

Effect of Self-reported Height on Occupational Rank Among Police Officers: Especially for Women it Pays to be Tall. Abraham P. Buunk, Gert Stulp & Wilmar B. Schaufeli. Evolutionary Psychological Science, Apr 22 2021. https://rd.springer.com/article/10.1007/s40806-021-00281-1

Abstract: This study among 725 male and 247 female police officers from The Netherlands examined the association between self-reported height and occupational rank from the perspective of sexual selection. Male and female police officers were taller than the average population. A larger percentage of women than of men was found in the lowest ranks, but in the leadership positions, there was a similar percentage of women as of men. Overall, but especially among women, height was linearly associated with occupational rank: the taller one was, the higher one’s rank. These effects were independent of educational level and age. The implications for evolutionary theorizing from the perspective of sexual selection on the effect of tallness on status and dominance among women are discussed.

Discussion

The present study examined if among police officers self-reported height is related to occupational rank. It was expected that overall, taller officers would be higher in rank than short officers, and thus more likely to attain important leadership positions. Substantial evidence was found for this prediction. Unlike what one would expect on the basis of sexual selection theory and what has in generally been found previously (e.g., Judge & Cable, 2004), the association between self-reported height and occupational rank was much stronger among women than among men. Among women, from the rank of sergeant, there was a linear increase in self-reported height up till the highest rank of chief superintendent, suggesting that a woman’s career opportunities in the police force are affected by their height. Although the association between self-reported height and occupational rank for men was much weaker than among women, for men as well as for women the—statistical—effects of self-reported height were maintained when controlling for two factors that may be related to occupational rank, i.e., age and educational level. However, age might not necessarily be a reliable indicator of rank in such occupations as many officers may retire without having attained a high rank, and some officers may even be degraded in rank as a punishment. Furthermore, it must be noted that the effect sizes were small, and that there were some quite tall people in the lower ranks, and similarly some quite short people in the higher ranks. Nevertheless, in general, the present findings are in line with many studies that have shown that height is associated with rank and salary in organization (e.g., Judge & Cable, 2004).

There may be various reasons why the effect of self-reported height on occupational rank was much stronger for female than for male police officers. First, as women are shorter than men are, given the importance of having a kind of natural authority and physical strength as a police officer when dealing with the public, in the selection and promotion, more—though not necessarily conscious—attention may be paid to women’s height. Second, although there is evidence that women of medium height may feel they are most popular with the opposite sex (Stulp et al., 2013c), the present research fits with the evidence that taller women tend to be more career oriented (Deady & Smith, 2006; see also Buunk et al., 2019). Given the emphasis on affirmative action and given the positive stereotypes of tall people, taller women may be selected more likely for leadership positions than short women. Indeed, although this is no longer true for the Netherlands, as noted in the Introduction, in many European countries, there is a minimum height required for entering the police force (Kirchengast, 2010), and it is possible that in the Netherlands, still norms from the past play a role in hiring and promotion of police officers.

Although one might consider the association between self-reported height and occupational rank in the police organization in part as a result of unfounded prejudice against short people (cf. Lagestad, 2012), in police work, it may be to some extent functional to base one’s decisions to hire or promote tall women as they might be more effective in dealing with the public, especially with difficult situations involving male law transgressors. Taller people have simply an advantage in daily interactions. The present findings suggest that this was not the case: officers in the lowest levels of occupational rank were among men and women shorter than officers in the higher levels. Interestingly, there is some evidence that short officers may have better physical skills (Lagestad, 2012), which help them in fulfilling their tasks adequately.

In the present research, it was not possible to examine the influence of childhood environments on height, but this would be an important venue to examine in future research. Even though height is for about 80% heritable (e.g., McEvoy & Visscher, 2009; Perola et al., 2007), psychosocial stress and malnutrition during childhood do all adversely affect growth (e.g., Silventoinen, 2003; Cavelaars et al., 2000; Mascie-Taylor, 1991; Nyström Peck & Lundberg, 1995). A positive association between self-reported height and occupational status, especially among women, as found in the present research may be in part a result of one’s childhood environment, which not only positively affects height but also health (Silventoinen et al., 1999) and cognitive abilities (Case & Paxson, 2008). Nevertheless, the present findings are in line with other studies that showed that, even when controlling for family background, height may be positively associated with socioeconomic status (e.g., Magnussen et al., 2006), and with social skills (Persico et al., 2004; Cinnirella & Winter, 2009).

Given the relatively recent opening of leadership positions to women in The Netherlands, there were a number of relevant descriptive findings on the rank of women in the police force. First, although there were numerically fewer women in the highest level, the percentage of women at that level was the same as that of men. This may indicate that currently, there is less discrimination of women than before when it comes to top positions in the Dutch police organization. Second, the effect of gender on occupational rank was small and smaller than that of educational level and age. This suggests that one of the reasons that there are more men than women in the higher ranks may in part be due to the fact that women have only recently entered the Dutch police force in substantial numbers, and therefore are younger, and have had less time to build up the necessary experience to advance up in the organization. Women in the present sample were indeed on average nearly 7 years younger than men. Nevertheless, educational level had a strong effect on occupational rank, and female officers were more highly educated than male officers. In future research, it would be important to unravel the precise processes underlying the effects of height, educational level, and gender on the rank in the police force.

Finally, the current research has a number of potential limitations. First, as noted above, the effect sizes were not very large. Second, like in most studies, self-reported height rather than actual height was assessed, and individuals may overestimate their height. However, as noted in the “Method,” there is considerable evidence for a very high correlation between self-reported and actual height (Ekström et al., 2015; Lasalle et al., 2013). Moreover, there is evidence that actual height is in a similar way associated with for example status and attractiveness as self-reported height (e.g., Stulp et al., 2013c). A third potential limitation of the present findings is that these may be particularly relevant for organizations where physical dominance is an advantage, including not only the police but also for example fire brigades, the armed forces, or rescue services.

To conclude, the present research suggests that in organizations, at least self-reported height may be associated more strongly with status and dominance among women than among men. Given the finding that there is evidence that short police students of both sexes generally perform better in physical tests than tall police students (Lagestad, 2012), it seems possible that also stereotypes may play a role, inducing halo effects favoring taller people, without paying enough attention to their actual qualifications. However, in general, it seems that such halo effects do occur more with respect to men than with respect to women (e.g., Jackson & Ervin, 1992). It is important to examine in future research which processes are responsible for the effect of height on organizational rank, and especially for sex differences in this respect. In any case, the present research may hopefully increase in general the awareness of the potential importance of height of women in a specific type of organizational settings, i.e., the police force, a phenomenon that has received relative attention in research so far.

Highly speculative: Evolution of genetic networks for human creativity

Evolution of genetic networks for human creativity. I. Zwir, C. Del-Val, M. Hintsanen, K. M. Cloninger, R. Romero-Zaliz, A. Mesa, J. Arnedo, R. Salas, G. F. Poblete, E. Raitoharju, O. Raitakari, L. Keltikangas-Järvinen, G. A. de Erausquin, I. Tattersall, T. Lehtimäki & C. R. Cloninger. Molecular Psychiatry, Apr 21 2021. https://www.nature.com/articles/s41380-021-01097-y

Abstract: The genetic basis for the emergence of creativity in modern humans remains a mystery despite sequencing the genomes of chimpanzees and Neanderthals, our closest hominid relatives. Data-driven methods allowed us to uncover networks of genes distinguishing the three major systems of modern human personality and adaptability: emotional reactivity, self-control, and self-awareness. Now we have identified which of these genes are present in chimpanzees and Neanderthals. We replicated our findings in separate analyses of three high-coverage genomes of Neanderthals. We found that Neanderthals had nearly the same genes for emotional reactivity as chimpanzees, and they were intermediate between modern humans and chimpanzees in their numbers of genes for both self-control and self-awareness. 95% of the 267 genes we found only in modern humans were not protein-coding, including many long-non-coding RNAs in the self-awareness network. These genes may have arisen by positive selection for the characteristics of human well-being and behavioral modernity, including creativity, prosocial behavior, and healthy longevity. The genes that cluster in association with those found only in modern humans are over-expressed in brain regions involved in human self-awareness and creativity, including late-myelinating and phylogenetically recent regions of neocortex for autobiographical memory in frontal, parietal, and temporal regions, as well as related components of cortico-thalamo-ponto-cerebellar-cortical and cortico-striato-cortical loops. We conclude that modern humans have more than 200 unique non-protein-coding genes regulating co-expression of many more protein-coding genes in coordinated networks that underlie their capacities for self-awareness, creativity, prosocial behavior, and healthy longevity, which are not found in chimpanzees or Neanderthals.


Discussion

This is the first study to identify the genotypic differences among chimpanzees, Neanderthals, and modern humans that may account for the rapid emergence of human creativity and other components of behavioral modernity, including its physical, emotional, cognitive, social, and spiritual features. In preparatory work we identified three naturally occurring genotypic networks for emotional reactivity, intentional self-control, and self-awareness. The 972 genes in these networks account for nearly all the heritable variation of human personality, including the characteristics of behavioral modernity (namely, creativity, prosocial behavior, and healthy longevity). Now we have found that 267 of these genes are absent in both chimpanzees and Neanderthal genomes, and we replicated this finding in three high-coverage Neanderthal genomes.

We also found that Neanderthals had nearly the same proportions of genes for emotional reactivity as chimpanzees. Excluding 54 genes found only in Sapiens, 72% of the 195 genes for emotional reactivity were common to all three species. On the other hand, Neanderthals were intermediate to chimpanzees and Sapiens in their proportions of genes for self-control and for self-awareness. Putting aside the genes for personality present in chimpanzees, Neanderthals had 33% of the genes for self-awareness and 37% of the genes for self-control that are present in Sapiens. Nevertheless, when we took into account the modular organization of these genes in clusters with other genes, we estimated the relative well-being of Neanderthal-like humans was 61–70% of that of prototypical Sapiens who carried genes found only in modern humans. Prototypical Sapiens have much stronger genotypic predisposition to the characteristics of behavioral modernity than Neanderthal-like humans, particularly from sets of genes in the self-awareness network associated with creativity, prosocial behavior, and longevity (F (3,252)p < 00001, Cohen’s effect size f = 0.34).

In addition, we obtained evidence that the genes found only in Sapiens were likely to be regulatory and advantageous. Specifically, 94% of the 267 genes found only in Sapiens were not protein-coding, including many lncRNAs (46%), pseudogenes (35%), and ncRNAs (6%). 64% of the genes found only in Sapiens were in the self-awareness network, especially lncRNAs that we found to be under positive selection.

Finally, we tested the importance of the genes unique to Sapiens for human well-being and behavioral modernity by identifying the brain regions in which they were over-expressed. We confirmed that naturally occurring clusters of genes associated with one or more genes found only in Sapiens were over-expressed in the core brain regions for human self-awareness, which is strongly associated with the human well-being, including the characteristics identified by anthropologists as distinguishing Sapiens from other hominids whom they replaced by 40 kya.

With these key findings in mind, we will discuss both the anthropological and the genetic data available to test our hypotheses related to the successive emergence of nearly disjoint networks for regulation of emotional reactivity, intentional self-control, and creative self-awareness in the hominoid lineage of modern humans. From our preparatory studies of the phenotypi–genotypic architecture of human personality, we recognize that these three networks function cooperatively so that a person can learn to integrate their habits, goals, and values in adapting to changes in their internal and external milieu. Available information about the coincident changes in brain and behavioral functioning in the phylogeny of Sapiens help to guide our interpretation of our findings based on comparison of the genomes of chimpanzees, Neanderthals, and Sapiens.

Emergence of the network for regulation of social emotions

The mammalian ancestors of anthropoid primates were mostly small, nocturnal, and solitary; but as temperatures cooled and tropical forests receded during the late Eocene, around 40 million years ago (mya), there was probably a selective advantage in social cooperation among higher primates as a protection against predators when foraging in the daytime [1214]. Social learning similar in kind to that of humans consequently developed among monkeys and apes, resulting in social attachment [9899] and the regulation of emotional reactivity based on social context and the reduction of emotional distress by reconciliation [100], as among chimpanzees today who, following a fight, often engage in mouth-to-mouth kissing and ventral embraces. Social learning also allows proto-cultural transmission of traditions in grooming, courting, foraging, and food preparation [101,102,103]. Emotional gestures and vocal calls facilitate social relations among triads and larger groups of higher primates, so that a third party, such as a high-ranking group leader, can intervene to resolve conflicts [100104].

On the other hand, while chimpanzees show emotional reactivity and learning abilities similar to those of a 2- or 3-year-old modern human child, they do not exhibit the regulatory capacities of older modern human children [105]. Chimpanzees use tools to solve simple tasks, like cracking nuts or catching termites; but they do not teach each other to manufacture and use these tools [1]. They can be taught to use signs and form two-to-four-word sentences at a rate consistent with behavioral conditioning, but, unlike modern human children, they do not spontaneously acquire symbolic language [45106107]. The self-aware memory of modern human children begins to mature around 4 years of age, and afterward they show greater capacity than chimpanzees for delay of gratification, reasoning about beliefs, and solving problems about internal memories [57105,106,107,108].

When the brains of higher primates are compared to those of more distant relatives of humans [1245], the prefrontal cortex is typically enlarged, projecting directly to the hypothalamus, striatum, thalamus, septum, and basal amygdala. Affective information is also relayed to the middle insular cortex, which allows regulation of sensuality. The mirror neuron system emerges, allowing the understanding of action and the imitation of observed behaviors, a necessary precursor of language. In great apes, there is also differentiation of the anterior insular cortex, allowing the enhanced emotional awareness that supports the communication of social emotions. On the basis of these findings of coincident changes in brain and behavior, we hypothesized that the genome of chimpanzees is likely to have the genetic network for regulation of emotional reactivity, but not those for either intentional self-control or creative self-awareness [1245]. Our current findings strongly confirm this hypothesis: the emotional reactivity network is well-developed in all three hominoid species that we evaluated. Putting aside the 54 genes found only in Sapiens, 72% of the 195 genes in the emotional reactivity network were shared by all three species (Table 1).

Emergence of the network for regulation of intentional self-control

Early hominins rapidly became distinguished from great apes by a greater facility for purposeful goal-seeking behaviors such as tool-making and coordinated hunting for food [1245]. Current indications are that the use and manufacture of stone tools were introduced by archaically-proportioned “australopiths” (e.g., [109]) at a time when open habitats were becoming more widespread as tropical forests shrank. Subsequently, the possession of more or less modern limb proportions by the earliest properly diagnosable members of the genus Homo indicates that hominins had finally committed themselves to those open habitats by a little under 2 million years ago. This crucial transition is poorly documented in behavioral terms, but it certainly represented an extreme environmental and economic shift that must have had profound cognitive and social sequelae.

Once committed to open habitats, the brain size of hominins began to increase rapidly. Homo ergaster (literally, working man) was reasonably tall and slenderly built in the basic manner of modern humans, and introduced the Acheulian tool industry of symmetrical bifacial hand-axes before 1.6 mya. These implements were intentionally flaked to conform to a template held in their makers’ minds. Later hominines continued this tool-making tradition without radical innovation until around 400 kya [910]. This archeological record of technological stasis for over a million years documents that early humans had the capacity for intentional self-control, but that humans living prior to 400 kya, including the common ancestor of Neanderthals and Sapiens, did not manifest the creativity associated with the genotypic network for self-awareness of Sapiens [12].

Homo neanderthalensis, a species that evolved from an endemic European precursor some 200 thousand years ago, was one highly evolved end-product of the human commitment to living in open habitats. Neanderthals were clearly purposeful and resourceful creatures who typically lived in small bands of perhaps 12–25 individuals that foraged across vast landscapes [110]. They were clearly sophisticated beings who were highly opportunistic in the resources they exploited: they hunted some frighteningly large prey when circumstances dictated (thereby possibly accounting for a reported high incidence of bone fractures [110]); at least occasionally they built shelters, and they controlled fire in hearths [111,112,113]. There is evidence at Shanidar cave in northern Iraq of a Neanderthal surviving to advanced age despite being severely handicapped by a useless arm, suggesting social cooperation and empathy for others within their small groups [113]. On the other hand, while Neanderthals buried their dead, they typically did so without the grave artifacts characteristic of later Cro-Magnon burials [113114]. Neanderthals produced artifacts that have been interpreted as symbolic art, but these infrequent expressions were simple and two-dimensional [73,74,75], possibly comparable to pictures produced by modern human children before the age of 7 years [115]. Their low genetic diversity suggests that they lived in small isolates with limited mating between groups [110116], although there is some evidence for female exogamy [115].

In the period following 40 thousand years ago the Neanderthals were rapidly replaced in Europe, albeit with some minor gene exchange [117], by invading Homo sapiens whose lives showed unprecedented cultural and technological sophistication. While still itinerant hunter-gatherers, these anatomically and behaviorally distinctive new humans populated the landscape in higher densities and brought with them the symbolic tradition of narrative cave art with use of pictorial depth cues in integrated compositions of great complexity and beauty [118]. This innovative practice of creating pictures from the imagination—“the mind’s eye”—is the most powerful indicator we have of the awakening of the modern sensibility, with its profusion of abstract but clearly meaning-laden signs in addition to the sophisticated animal images famous from such localities as Chauvet and Lascaux [73].

The brains of extinct humans are available only as fossil endocasts, limiting the observations that can be made. Compared to chimpanzees, fossil data document the emergence of hemispheric asymmetry along with bipedality in australopiths and non-Sapiens. Arising late in hominin history, Neanderthals had large brains that averaged about 1500 ml in volume, more or less identical to those of contemporaneous Pleistocene Homo sapiens (although modern human brains are almost 13% smaller [117]). However, those brains appear to have been organized differently from modern ones: Neanderthals had relatively larger visual areas, while Sapiens have expanded parietal lobes [69] and higher prefrontal regions. On the basis of these findings of coincident differences in brain and behavior, we hypothesized that the genome of Neanderthals would likely be found to have the genetic network for regulation of emotional reactivity and some of the genes of the network for intentional self-control, but not that for self-awareness [1245].

Our current findings confirm that the genotypic network for intentional self-control is well-developed in Neanderthals but not in chimpanzees. They also suggest that Neanderthals had acquired genes for self-control and self-awareness in numbers intermediate between modern human and chimpanzees. Excluding genes already present in chimpanzees, Neanderthals had 33% of the 254 genes for self-awareness and 37% of the 186 genes for self-control that are present in Sapiens. Taking into account the modular organization of groups of genes within human learning networks, we estimated that the relative level of genotypic predisposition to well-being and modernity of Neanderthal-like humans was 61–70% of that of prototypical Sapiens. When compared to prototypical Sapiens, the genotypic predisposition to modernity of Neanderthal-like humans is lowest for self-awareness (Cohen’s effect size f = 0.34). These findings suggest that the crucial event that sparked the emergence of behavioral modernity was the advanced evolution of the genotypic network for self-awareness in Sapiens, but we need to consider alternative explanations for these findings.

Of course, one possible alternative explanation is that all the genes present in Neanderthals may not have been documented in the genomic information currently available to us, even though we replicated our findings using the 2010 draft genome separately in each of the three high-coverage Neanderthal genomes that are available: Vindija 33.19 from the central range of Neanderthals in Croatia, as well as the genomes of a Neanderthal from the Altai Mountains and another from the Chagyrskaya Cave in Russia [110116117119]. These replicated findings provided robust support for our comparative analyses, but we still needed to know whether the genes we did find provided a mechanism that might account for the emergence of creativity.

Emergence of the network for creative self-awareness

What mechanism promoted the emergence of the genetic network for creative self-awareness in behaviorally modern human beings? The brains of Sapiens are unique in having a system for self-awareness that connects the late-myelinating regions of the frontal, parietal, and temporal cortices [57120]. These most recently evolved regions of the brain are the final association areas in which information is integrated and evaluated, and are linked into a unified network for episodic memory by projections from visual cortex [1245]. Autobiographical learning and memory mediate awareness of the self as a continuous identity across space and time. Psychologically, the creative network is so-named because it is found in people who are imaginative, inventive, prosocial, and spiritual [4247485580121]. Such self-transcendent thinking involves the ability to perceive oneself as a local aspect of a larger spatio-temporal whole, which permits thinking that is free and creative (i.e., “outside the box” of logical deduction and cultural tradition) and theoretically inductive (i.e., extrapolation beyond prior examples based on insight and creative imagination), as expressed in art, science, spirituality, and narrative syntactical language [1245]. On the basis of findings of the unique association of coincident changes in brain with cognitive functions for self-awareness and creativity, we hypothesized that only Sapiens were likely to have the genotypic network for self-awareness.

However, this hypothesis was only partially supported. We found that Neanderthals had only 33% of the genes for self-awareness present in Sapiens; but these genes, when organized in clusters with other human genes, were sufficient for Neanderthal-like humans to function at 61–70% of the level of well-being of prototypical Sapiens. This still does not inform us whether Neanderthals had crossed the genotypic threshold needed to have the potential to express some or all of the features of behavioral modernity, even if that capacity has not been adequately documented in the archeological record.

Therefore, we asked whether the genetic differences between Neanderthals and Sapiens revealed molecular mechanisms that qualitatively distinguished them and/or accounted for greater reproductive fitness in Sapiens. We found that the lincRNAs unique to Sapiens are under positive selection and are functionally different than those found in the Neanderthal genome. LincRNAs are known to evolve rapidly [122], and to influence complex patterns of adaptive functioning, plasticity, and health by regulation of gene expression [123124] and co-expression of groups of genes [125]. We found that 70% of the lincRNAs under positive selection and unique to Sapiens are in the genotypic network for self-awareness. When reared under conditions of parental warmth and tolerance, Sapiens with the genotypic network for self-awareness are likely to develop a creative-reliable personality profile characterized by creativity, altruism, and healthy longevity [19], thereby creating a distinctive social dynamic. This interpretation is directly supported by our additional finding that the genes for Sapiens are found in multi-locus genotypic clusters that are over-expressed in the brain regions that define the self-awareness network.

Furthermore, the characteristics of altruism and healthy longevity may have provided conditions necessary for kin selection for creativity in Sapiens as an adaptive response to intense ecological pressure from climatic fluctuations and unpredictable variability in resource availability in East Africa, but not Neanderthals who were not under the same pressures in Europe. The importance of prosocial environments for creative achievement is still evident in behavioral differences among modern humans observed today: even Sapiens with the genotypic network for self-awareness are still vulnerable to physical, emotional, cognitive, and social ill-being under hostile or inequitable social conditions [19], as shown in Figure S5D. Consequently, altruistic and creative behaviors are frequent, but inconsistent, features of Sapiens [121126].

Considering all the evidence available, we know that Neanderthals were intermediate between chimpanzees and Sapiens in the development of the genotypic network for self-awareness. We also know that Sapiens have a distinctive set of genes that are mostly in the self-awareness network, are under positive selection, and are not present in Neanderthals. Our genotypic findings document molecular mechanisms that may provide a likely explanation for the archeological record that has found only rudimentary evidence of creativity and other signs of behavioral modernity in Neanderthals. We, therefore, need to carefully consider these potentially crucial mechanisms in detail.

Hypotheses about selection for creativity

The newly emergent creativity may have provided selective advantages to behaviorally modern humans beyond its purely cognitive advantages. Physiologically, it is associated with enhanced memory functions, health, and well-being (Supplementary Figs. 5 and 6), including a predisposition to longevity and resilience against stress, injury, and chronic diseases including cardiovascular and neurodegenerative diseases [196465]. Living longer and healthier lives may have allowed behaviorally modern Homo sapiens to disperse rapidly and widely around the world, and it may also have helped individuals support their children, grandchildren, and others in interconnected social communities, thereby possibly leading to positive selection for traits such as creativity, innovativeness, prosociality, and wisdom [127,128,129,130,131]. We hypothesized that the genetic network for creativity was positively selected because we had previously found that longevity and well-being are promoted by the integration of creative functioning, plasticity, and virtues like moderation, altruism, and wisdom [19]. This hypothesis is further supported by our finding that 70% of the advantageous lncRNAs unique to Sapiens were in the self-awareness network, which is strongly associated with creativity, prosociality, and healthy longevity [195580]. Hence it is a crucial observation that most of the key regulatory genes for creative self-awareness are only present in Sapiens, and not in Neanderthals: of the 130 lncRNAs in the self-awareness network, none were present in chimpanzees, 42% were shared by Sapiens and Neanderthals, and 58% were found only in modern humans (Table 1, Fig. 2, Supplementary Table S3).

Role of LncRNAS in rapid evolutionary change

What mechanism can account for the rapidity of the evolution of creativity, healthy longevity, and fitness in Sapiens [1,2,3,4132]? Changes in mutation rates do not provide an explanation because they remained stable in the transition from archaic to modern humans [119133]. We considered mechanisms by which new genes appear in ways that do not depend on the mutation rate of ancestral genes [134]. We observed that 67% of the genes associated with human self-regulation and creativity were regulatory genes [64], including a significant predominance of lncRNA genes and pseudogenes when compared to the genes related to behavioral conditioning of temperament [65]. We know that differences in complexity of functions between species usually depend on differences in the regulation of gene expression of a highly conserved core of protein-coding genes, as has been shown for the differences between chimpanzees and humans [135,136,137].

More specifically, we know that lncRNA gene are often important regulators of gene expression [138] and are often acquired by horizontal gene transfer (HGT) [88]. HGT (i.e., the acquisition of genes from an organism other than a direct ancestor) allows genomes to expand rapidly, assemble new pathways, and express new functions [139]. HGT is the main mechanism for acquisition of new genes in prokaryotes and single-celled eukaryotes, and also is widespread in primates, including humans. Many new genes have been acquired throughout the modern human genome, especially protein-coding and lncRNA (e.g., lincRNA and antisense) genes [88]. Therefore, we tested the hypothesis that modern human beings acquired the genes that enabled the rapid evolution of creativity and healthy longevity by HGT. We found that genes for human personality are enriched in HGT regions, but the enrichment was observed for genes in the emotional reactivity network as well as the others. Furthermore, only 2 of the 39 genes we found in HGT regions were unique to modern humans. Therefore, we concluded that HGT may have contributed to personality development in hominoids in general, but it did not have a major role in the development of the creative personality or self-awareness.

In contrast, our findings that 70% of lincRNAs unique to humans and under positive selection were found exclusively in the self-awareness network does provide evidence of their involvement in the evolution of self-awareness and the various aspects of human well-being and behavioral modernity. Likewise 35% of the genes unique to Sapiens were pseudogenes, which are also often under positive selection in primates [140141] and involved in regulation of human cognition [142]. Pseudogenes were more frequent in genes associated with personality in Sapiens (8% of 972) than in Neanderthals (2% of 652). However, in Sapiens, pseudogenes were more frequent in the network for self-control (43%) than for self-awareness (28%). Therefore, lncRNAs appear to have played a more direct role in the emergence of creativity in Sapiens, although pseudogenes also contribute substantially to the differences between the two human species that emerged under distinct ecological conditions.

In contrast to the differences that we observed in biotypes between species, we found that the biotypes of the genes are similar for each of the three networks within each species (Fig. 1). In sum, both the differences in biotypes between species and the similarity of biotypes across adaptive networks within species support our hypothesis that the nearly disjoint genotypic networks are likely to have emerged in incremental steps. The initial emergence of intentional goal-setting in early hominins and later the emergence of the creative imagination of Sapiens has allowed modern humans to adapt to social and environmental challenges by brain functions that are associated with distinctive molecular processes and many regulatory genes that are found in modern humans, but not chimpanzees or Neanderthals.

Strengths and limitations

The major innovation and strength of our study of the evolution of human creativity is our having begun by first characterizing the complex genotypic–phenotypic architecture of human personality that underlies the human capacity for self-awareness, symbolism, and creativity. We identified and replicated the genotypic networks underlying the three major systems for learning in Sapiens (behavioral conditioning, intentionality, and self-awareness). This allowed us to focus comparative genomic analyses on 972 genes that account for modern human personality and learning capacities.

A major challenge was that there is less information about the Neanderthal genome than there is for modern Homo sapiens and chimpanzees. The annotated genome from the Neanderthal Genome Project from 2010 is based on low-coverage data, nearly all of which was from the Vindija Cave in Croatia that lay in the central range of Neanderthals throughout most of their existence. Fortunately, we were able to replicate our initial findings with the complete high-coverage (~50×) genome of the Altai Neanderthal, which confirmed the same 267 genes of Sapiens that were absent in Neanderthals from Vindija. Our findings were also confirmed in separate analyses of two other high-coverage (~30×) genomes from caves in both Croatia and Russia, so our findings are robust.

Another limitation of all work about complex phenotypes is that extinct hominids can never be available for quantitative phenotypic assessments comparable to those of modern humans using the TCI. Fortunately, the TCI has been directly validated with measures that correspond to descriptions of behavioral modernity by paleoanthropologists. Our genotypic measures and phenotypic measures are strongly related (Supplementary Fig. S3 and Table S2), and we have characterized the complex hierarchical and modular organization of their phenotypic–genotypic relations. As a result, we were able to use our genotypic measures to estimate the relative genotypic predisposition to the well-being and modernity of Neanderthal-like humans to prototypical Sapiens. Unfortunately, we still cannot state definitely what aspects of self-awareness Neanderthals may have displayed. We know that even chimpanzees have some rudimentary aspects of self-awareness, including mirror recognition and some recognition of self-agency [143]. However, chimpanzees lack flexibility in reasoning about abstractions, such as beliefs and intentions, an aspect of creativity and self-awareness that emerges between 3 and 5 years of age in modern human children [108144]. Therefore, we expect that Neanderthals had at least rudimentary aspects of self-awareness intermediate between chimpanzees and Sapiens, even though Neanderthals lacked most of the lncRNAs for self-awareness that we found in modern humans.

Because we focused only on the 972 genes that account for personality in Sapiens, we cannot exclude the possibility that Neanderthals had genes that were not present in Sapiens and influenced their personality and learning abilities. These genes could have been inherited from the common ancestor of Neanderthals and Sapiens or acquired by Neanderthals subsequently. Any such unique Neanderthal genes could have had functions homologous or distinct to those present in modern humans. However, we have identified what genes found in Sapiens, but not in Neanderthals, account for the emergence of the advantageous capacities of Sapiens, including creative self-awareness, prosocial behavior, and healthy longevity. Available behavioral data also indicate that these same capacities were absent in Neanderthals and other extinct hominids, and more detailed genotypic-phenotypic analyses comparable to what we have done in modern humans are impossible. Therefore, it is likely to be much more useful to pursue a more detailed understanding of the functions of the genes unique to Sapiens than those unique to extinct hominids.

Another major challenge was the limited information known about the functions of the non-coding RNA genes that comprised most of the genes found only in Sapiens. Fortunately, lncRNA genes have been shown to regulate the expression of sets of other genes, so we were able to identify the specific brain regions in which the multi-locus genotypes that map to the SNP sets related to self-awareness in Sapiens are expressed. Our findings of gene expression in the brain of the self-awareness network confirmed findings from functional brain imaging about the brain regions involved in various functions of self-awareness, including autobiographical memory, prospection, theory of mind, and the default mode [59]. Our findings extended this by revealing additional subcortical structures that are involved in cortical feedback loops important for the automatic processing and integration of information in self-awareness. The replicability of our genetic findings and their meaningful association with specific brain circuitry for complex human functions provides strong evidence for the validity of the data-driven methods we have developed and applied to characterize complex adaptive systems [64].

Overview

Our findings have broad implications for understanding what enabled Sapiens to displace Neanderthals and other species of Homo in the geologically recent past, as well as literally to reshape the world during the Anthropocene. Living longer, healthier lives may have promoted and valorized the extended periods of juvenile and adolescent learning that allow the accumulation of knowledge that is such a remarkable feature of behaviorally modern humans, and that is such an important factor in the economic success and complex social structures and relationships of Homo sapiens [145]. It may also have encouraged cooperation among individuals to promote the success of their children, grandchildren, and others in their extended communities [128131], enabling the technological innovativeness, behavioral flexibility, and exploratory disposition needed to allow Homo sapiens to spread throughout the world more successfully than other human lineages [1,2,3]. Further work is needed to understand the specific functions of the lncRNAs associated with self-awareness that underlie the capacity of modern humans for healthy longevity, prosociality, and creativity. Fuller understanding is greatly needed because of the frequent failure of these beneficial capacities of modern humans to be self-actualized during the Anthropocene [52].